IB mission statement

The International Baccalaureate aims to develop inquiring, knowledgeable and caring young people who help to create a better and more peaceful world through intercultural understanding and respect.

To this end the organization works with schools, governments and international organizations to develop challenging programmes of international education and rigorous assessment.

These programmes encourage students across the world to become active, compassionate and lifelong learners who understand that other people, with their differences, can also be right.
IB learner profile

The aim of all IB programmes is to develop internationally minded people who, recognizing their common humanity and shared guardianship of the planet, help to create a better and more peaceful world.

As IB learners we strive to be:

INQUIRERS
We nurture our curiosity, developing skills for inquiry and research. We know how to learn independently and with others. We learn with enthusiasm and sustain our love of learning throughout life.

KNOWLEDGEABLE
We develop and use conceptual understanding, exploring knowledge across a range of disciplines. We engage with issues and ideas that have local and global significance.

THINKERS
We use critical and creative thinking skills to analyse and take responsible action on complex problems. We exercise initiative in making reasoned, ethical decisions.

COMMUNICATORS
We express ourselves confidently and creatively in more than one language and in many ways. We collaborate effectively, listening carefully to the perspectives of other individuals and groups.

PRINCIPLED
We act with integrity and honesty, with a strong sense of fairness and justice, and with respect for the dignity and rights of people everywhere. We take responsibility for our actions and their consequences.

OPEN-MINDED
We critically appreciate our own cultures and personal histories, as well as the values and traditions of others. We seek and evaluate a range of points of view, and we are willing to grow from the experience.

CARING
We show empathy, compassion and respect. We have a commitment to service, and we act to make a positive difference in the lives of others and in the world around us.

RISK-TAKERS
We approach uncertainty with forethought and determination; we work independently and cooperatively to explore new ideas and innovative strategies. We are resourceful and resilient in the face of challenges and change.

BALANCED
We understand the importance of balancing different aspects of our lives—intellectual, physical, and emotional—to achieve well-being for ourselves and others. We recognize our interdependence with other people and with the world in which we live.

REFLECTIVE
We thoughtfully consider the world and our own ideas and experience. We work to understand our strengths and weaknesses in order to support our learning and personal development.

The IB learner profile represents 10 attributes valued by IB World Schools. We believe these attributes, and others like them, can help individuals and groups become responsible members of local, national and global communities.
The objectives of any MYP subject group state the specific targets that are set for learning in that subject. They define what the student will be able to accomplish as a result of studying the subject.

The objectives of MYP sciences encompass the factual, conceptual, procedural and metacognitive dimensions of knowledge.

Schools must use the objectives provided in this guide for years 1, 3 and 5 of the programme.

Each objective is elaborated by a number of strands; a strand is an aspect or indicator of the learning expectation.

Subject groups must address all strands of all four objectives at least twice in each year of the MYP.

These objectives relate directly to the assessment criteria found in the “Assessed curriculum” section of this guide.

Together these objectives reflect the holistic nature of science and the real-world work of scientists. They enable students to engage with all aspects of science, either through individual objectives or connected processes.

A Knowing and understanding

Students develop scientific knowledge (facts, ideas, concepts, processes, laws, principles, models and theories) and apply it to solve problems and express scientifically supported judgments.

Tests or exams must be assessed using this objective. To reach the highest level students must make scientifically supported judgments about the validity and/or quality of the information presented to them. Assessment tasks could include questions dealing with “scientific claims” presented in media articles, or the results and conclusions from experiments carried out by others, or any question that challenges students to analyse and examine the information and allows them to outline arguments about its validity and/or quality using their knowledge and understanding of science.

In order to reach the aims of sciences, students should be able to:

i. explain scientific knowledge

ii. apply scientific knowledge and understanding to solve problems set in familiar and unfamiliar situations

iii. analyse and evaluate information to make scientifically supported judgments.
B Inquiring and designing

Intellectual and practical skills are developed through designing, analysing and performing scientific investigations. Although the scientific method involves a wide variety of approaches, the MYP emphasizes experimental work and scientific inquiry.

When students design a scientific investigation they should develop a method that will allow them to collect sufficient data so that the problem or question can be answered. To enable students to design scientific investigations independently, teachers must provide an open-ended problem to investigate. An open-ended problem is one that has several independent variables appropriate for the investigation and has sufficient scope to identify both independent and controlled variables. In order to achieve the highest level for the strand in which students are asked to design a logical, complete and safe method, the student would include only the relevant information, correctly sequenced.

In order to reach the aims of sciences, students should be able to:

i. explain a problem or question to be tested by a scientific investigation
ii. formulate a testable hypothesis and explain it using scientific reasoning
iii. explain how to manipulate the variables, and explain how data will be collected
iv. design scientific investigations.

C Processing and evaluating

Students collect, process and interpret qualitative and/or quantitative data, and explain conclusions that have been appropriately reached. MYP sciences helps students to develop analytical thinking skills, which they can use to evaluate the method and discuss possible improvements or extensions.

In order to reach the aims of sciences, students should be able to:

i. present collected and transformed data
ii. interpret data and explain results using scientific reasoning
iii. evaluate the validity of a hypothesis based on the outcome of the scientific investigation
iv. evaluate the validity of the method
v. explain improvements or extensions to the method.

D Reflecting on the impacts of science

Students gain global understanding of science by evaluating the implications of scientific developments and their applications to a specific problem or issue. Varied scientific language will be applied in order to demonstrate understanding. Students are expected to become aware of the importance of documenting the work of others when communicating in science.

Students must reflect on the implications of using science, interacting with one of the following factors: moral, ethical, social, economic, political, cultural or environmental, as appropriate to the task. The student’s chosen factor may be interrelated with other factors.
In order to reach the aims of sciences, students should be able to:

i. explain the ways in which science is applied and used to address a specific problem or issue

ii. discuss and evaluate the various implications of the use of science and its application in solving a specific problem or issue

iii. apply scientific language effectively

iv. document the work of others and sources of information used.